BRINSCALES神经形态计算系统目前通过千兆 - 以太网网络技术连接到计算集群。这方便目前使用的实验模式,其中神经元网络在大多数晶片模块上覆盖。当建模较大尺寸的网络时,例如全尺寸的皮质微电路模型,必须考虑将晶片模块连接到更大网络的神经元。这可以使用扩展网络技术来完成,该技术提供高带宽和低延迟,以及低开销分组协议格式。
translated by 谷歌翻译
加固学习在机器学习中推动了令人印象深刻的进步。同时,量子增强机学习算法使用量子退火的底层划伤。最近,已经提出了一种组合两个范例的多代理强化学习(MARL)架构。这种新的算法利用Q值近似的量子Boltzmann机器(QBMS)在收敛所需的时间步长方面具有优于常规的深度增强学习。但是,该算法仅限于单代理和小型2x2多代理网格域。在这项工作中,我们提出了对原始概念的延伸,以解决更具挑战性问题。类似于Classic DQN,我们添加了重播缓冲区的体验,并使用不同的网络来估计目标和策略值。实验结果表明,学习变得更加稳定,使代理能够在具有更高复杂性的网格域中找到最佳策略。此外,我们还评估参数共享如何影响多代理域中的代理行为。量子采样证明是一种有希望的加强学习任务的方法,但目前受到QPU尺寸的限制,因此通过输入和Boltzmann机器的大小。
translated by 谷歌翻译
由于昂贵的挖掘程序,光纤到-UTH(FTTH)网络的扩展会产生高成本。因此,优化规划过程,最大限度地减少地球挖掘工作的成本导致大量节省。在数学上,FTTH网络问题可以被描述为最小的Steiner树问题。尽管在过去的几十年中已经在集中进行了密集地进行了强烈调查了施泰纳的问题,但可以在新的计算范例和新兴方法的帮助下进一步优化。这项工作研究即将到来的技术,例如Quantum退火,模拟退火和自然启发方法,如进化算法或基于粘液模具的优化。此外,我们还调查分区和简化方法。在几个现实生活中评估,我们可以在大多数域上表达传统的广泛使用的基线(NetworkX近似求解器)。先前分区初始图和所呈现的基于粘液模具的方法对于成本有效的近似特别有价值。 Quantum退火似乎很有希望,但受到可用Qubits的数量的限制。
translated by 谷歌翻译
交叉路口交通信号控制器(TSC)中的次优化控制策略有助于拥堵,导致对人类健康和环境的负面影响。交通信号控制的强化学习(RL)是设计更好控制政策的有希望的方法,并近年来吸引了相当大的研究兴趣。但是,在该区域中完成的大多数工作使用了交通方案的简化仿真环境,以培训基于RL的TSC。要在现实世界流量系统中部署RL,必须关闭简化的仿真环境和现实应用程序之间的差距。因此,我们提出了一个基准工具,将RL代理作为TSC的基准工具,在Lemgo的德国中型镇的逼真模拟环境中。除了现实的仿真模型之外,LEMGORL还包括交通信号逻辑单元,可确保符合所有监管和安全要求。 LEMGORL提供与Killknown Openai健身房工具包相同的界面,以便在现有的研究工作中轻松进行部署。为了演示LemGorl的功能和适用性,我们利用分布式和并行RL的框架训练CPU群集的最先进的深rl算法,并将其性能与其他方法进行比较。我们的基准工具推动了RL算法对现实世界的应用。
translated by 谷歌翻译
The release of ChatGPT, a language model capable of generating text that appears human-like and authentic, has gained significant attention beyond the research community. We expect that the convincing performance of ChatGPT incentivizes users to apply it to a variety of downstream tasks, including prompting the model to simplify their own medical reports. To investigate this phenomenon, we conducted an exploratory case study. In a questionnaire, we asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT. Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed key medical findings, and potentially harmful passages were reported. While further studies are needed, the initial insights of this study indicate a great potential in using large language models like ChatGPT to improve patient-centered care in radiology and other medical domains.
translated by 谷歌翻译
Explainable AI transforms opaque decision strategies of ML models into explanations that are interpretable by the user, for example, identifying the contribution of each input feature to the prediction at hand. Such explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by finding relevant subspaces in activation space that can be mapped to more abstract human-understandable concepts and enable a joint attribution on concepts and input features. To automatically extract the desired representation, we propose new subspace analysis formulations that extend the principle of PCA and subspace analysis to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), optimize relevance of projected activations rather than the more traditional variance or kurtosis. This enables a much stronger focus on subspaces that are truly relevant for the prediction and the explanation, in particular, ignoring activations or concepts to which the prediction model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
translated by 谷歌翻译
In recent years, several metrics have been developed for evaluating group fairness of rankings. Given that these metrics were developed with different application contexts and ranking algorithms in mind, it is not straightforward which metric to choose for a given scenario. In this paper, we perform a comprehensive comparative analysis of existing group fairness metrics developed in the context of fair ranking. By virtue of their diverse application contexts, we argue that such a comparative analysis is not straightforward. Hence, we take an axiomatic approach whereby we design a set of thirteen properties for group fairness metrics that consider different ranking settings. A metric can then be selected depending on whether it satisfies all or a subset of these properties. We apply these properties on eleven existing group fairness metrics, and through both empirical and theoretical results we demonstrate that most of these metrics only satisfy a small subset of the proposed properties. These findings highlight limitations of existing metrics, and provide insights into how to evaluate and interpret different fairness metrics in practical deployment. The proposed properties can also assist practitioners in selecting appropriate metrics for evaluating fairness in a specific application.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Kernel machines have sustained continuous progress in the field of quantum chemistry. In particular, they have proven to be successful in the low-data regime of force field reconstruction. This is because many physical invariances and symmetries can be incorporated into the kernel function to compensate for much larger datasets. So far, the scalability of this approach has however been hindered by its cubical runtime in the number of training points. While it is known, that iterative Krylov subspace solvers can overcome these burdens, they crucially rely on effective preconditioners, which are elusive in practice. Practical preconditioners need to be computationally efficient and numerically robust at the same time. Here, we consider the broad class of Nystr\"om-type methods to construct preconditioners based on successively more sophisticated low-rank approximations of the original kernel matrix, each of which provides a different set of computational trade-offs. All considered methods estimate the relevant subspace spanned by the kernel matrix columns using different strategies to identify a representative set of inducing points. Our comprehensive study covers the full spectrum of approaches, starting from naive random sampling to leverage score estimates and incomplete Cholesky factorizations, up to exact SVD decompositions.
translated by 谷歌翻译